Tiny particles pack a lot of power

Solar panels can be flexible and pretty

Soaking up the sun

A material called perovskite could revolutionise the solar industry. Most solar panels currently found on rooftops in Singapore are made of silicon. But scientists at the Nanyang Technological University are studying how this could open up new possibilities for solar panel deployment.

Double-side panels

Scientists discover that perovskite nanoparticles can also hit the two sides of a solar cell, providing a bigger charge output. This could be combined with the ability to charge a solar panel from both sides, making it more efficient. The technology could be used for solar panels and other devices that are exposed to sunlight from both sides.

Flexible solar panels

Scientists discover that perovskite can be deposited on flexible substrates, making it possible to use it in a variety of applications, such as flexible displays and wearables. This could make solar energy more accessible and convenient, as it can be integrated into various devices and surfaces.

S’pore team sheds light on tapping solar power

A ‘wonder material’ known as perovskite could help sunny Singapore tap more sunlight than it could have before. Audrey Tan looks at ongoing research at the Nanyang Technological University on how this material could revolutionise the local solar industry.

Solar installations need not always be眼前 seen.

S’pore team sheds light on tapping solar power

A ‘wonder material’ known as perovskite could help sunny Singapore tap more sunlight than it could have before. Audrey Tan looks at ongoing research at the Nanyang Technological University on how this material could revolutionise the local solar industry.

Soaking up the sun

A material called perovskite could revolutionise the solar industry. Most solar panels currently found on rooftops in Singapore are made of silicon. But scientists at the Nanyang Technological University are studying how this could open up new possibilities for solar panel deployment.

Double-side panels

Scientists discover that perovskite nanoparticles can also hit the two sides of a solar cell, providing a bigger charge output. This could be combined with the ability to charge a solar panel from both sides, making it more efficient. The technology could be used for solar panels and other devices that are exposed to sunlight from both sides.

Flexible solar panels

Scientists discover that perovskite can be deposited on flexible substrates, making it possible to use it in a variety of applications, such as flexible displays and wearables. This could make solar energy more accessible and convenient, as it can be integrated into various devices and surfaces.

S’pore team sheds light on tapping solar power

A ‘wonder material’ known as perovskite could help sunny Singapore tap more sunlight than it could have before. Audrey Tan looks at ongoing research at the Nanyang Technological University on how this material could revolutionise the local solar industry.

Soaking up the sun

A material called perovskite could revolutionise the solar industry. Most solar panels currently found on rooftops in Singapore are made of silicon. But scientists at the Nanyang Technological University are studying how this could open up new possibilities for solar panel deployment.

Double-side panels

Scientists discover that perovskite nanoparticles can also hit the two sides of a solar cell, providing a bigger charge output. This could be combined with the ability to charge a solar panel from both sides, making it more efficient. The technology could be used for solar panels and other devices that are exposed to sunlight from both sides.

Flexible solar panels

Scientists discover that perovskite can be deposited on flexible substrates, making it possible to use it in a variety of applications, such as flexible displays and wearables. This could make solar energy more accessible and convenient, as it can be integrated into various devices and surfaces.