Development of Executive Functioning and Math Skills

Education & Cognitive-Developmental Research at NIE

Kerry Lee

Head of Research
Education & Cognitive Development Lab
National Institute of Education

Academic Groups
- Asian Languages and Cultures
- Curriculum, Teaching and Learning
- Early Childhood and Special Needs Education
- English Language and Literature
- Humanities and Social Studies Education
- Learning Sciences and Technologies
- Mathematics and Mathematics Education
- Natural Sciences and Science Education
- Physical Education and Sports Science
- Policy and Leadership Studies
- Psychological Studies
- Visual and Performing Arts

Research Centres
- Centre for Research in Pedagogy & Practice
- Education & Cognitive Development Lab
- Learning Sciences Lab
- AG based research labs
Areas of Research

- Pure Basic Research
- Use-Inspired Basic Research (Strategic RD & I)
- Applied Research (Priority Innovation and Invention)
- Applied Research (Scaling Translation and Knowledge Management)

Focus of Investigation
- Student
- Classroom
- Teacher
- School
- National
- Regional & International
- Chronosystem

Core Baseline Tracking

Leadership & School Organisation

Teacher Learning

ICT Integration

Mathematics & Science

English Language & Mother Tongue Languages

Humanities

Applied Cognitive Development & Motivational Studies

Learning Sciences and Pedagogy

Assessment
Education & Cognitive Development Lab

Research Areas

Atypical Development/Disabilities/Children at Risk
- Kenneth Poon, Rebecca Bull, +1

Bilingual Development
- Beth O’Brien, Yin Bin, +1

Applied Cognitive Development
- Kerry Lee, Khng Kiat Hui, Rebecca Bull, Ang Su Yin

Intervention & Translational Science
- Jerome Rotgans, Alfredo Bautista

Supported by 30+ project based research assistants/associates/fellows
The impact of kindergarten on children’s developing abilities

Rebecca Bull & ECDL co-PIs
To examine *structural* and *process* factors as measures of quality in early childhood learning environments.

To understand how teacher-child interaction and structural factors relate to individual differences in the development of children’s socio-emotional, numeracy, literacy, language (EL & MT), self-regulation skills, and physical development.

To investigate the relation of home environment factors with child outcomes and to understand how the preschool environment might mediate early adverse conditions.

Figure 1. Main aim of the study
INHIBITION & ATTENTION

Fannie Khng Kiat Hui, Research Scientist
Effects and Mechanisms of a Deep Breathing Intervention for Test Anxiety

- Previous (behavioral) study
 - Taking deep breaths before a test significantly reduced feelings of (state) anxiety and improved performance
 - Hypothesized mechanisms

- However, behavioral data showed no changes in attentional focus
- Self-reported changes in state anxiety ≠ relaxation actually achieved

Follow-up study:
- EEG correlates
- Changes during deep breathing
- Changes in attention
Imaging as a Pedagogical Tool?
Near-infrared spectroscopy

- Measures blood oxygen level dependent response
- Possibility of examining pedagogical issues in situ
- Logic of experiments
 - Performance of cognitive task
 - Localised changes in cortical tissues
 - Increases in metabolism
 - Vasodilation
 - Changes in blood oxygenation level
 - Oxy vs. deoxy Hb have different light absorption properties
 - Allows visualisation of brain activity that correlates with the performance of cognitive tasks
Proof of Concept Study

- Problem size effect
 - RT and ACC differences
 - WM mediated

- Is NIRS sensitive to differences resulting from task difficulties?
 - Depth of penetration
 - Frontal unit
Method

• Participants
 o 21 healthy, right-handed adult participants

• Instrument
 o 16-channel NIRS
 o 4 tri-wavelength (730nm, 805nm, and 850nm) LEDs and 10 detectors, frequency = 3Hz
Task

- Manipulated task difficulty by varying the magnitude of the operands
- 75 questions
 - 5 x 15 randomized blocks

12 sec per qns x 5 qns = 60 sec

Easy Block (5 Questions)
- \(a + b = x\) or \(xy\)

Medium Block (5 Questions)
- \(ab + c = xy\)

Difficult Block (5 Questions)
- \(ab + cd = xy\)
Results

Fig 4. Schematic diagram of the experiment setup and arrangement of light sources (L) and detectors (1 - 16) on the probe.

Fig 7. Changes in [HbO2] in Ch 9 for all participants (N=21)

Fig 8. Changes in [HbO2] in Ch 11 for all participants (N=21)

a) No difference was found in Δ[deoxy-Hb] and Δ[Total-Hb].
b) Significant differences were found in [Oxy-Hb], particularly in channel 9 & 11. Blood oxygenation level increased with task.
Classroom Application?
Executive functioning & developing math skills
Two Strategies

• A cow weighs 150 kg more than a dog
• A goat weighs 130 kg less than the cow
• Altogether the three animals weigh 410 kg
• What is the mass of the cow?

Primary/Grade 5

Secondary 2/Grade 8

Ng & Lee (2009) Journal for Research in Mathematics Education
Why Algebra?

- In Singapore, algebraic word problem has an important role in the primary math curriculum
- Considerable variation in performance
 - Why?

- Pattern recognition
- Quantitative comparison
- Operation reversal

Bridge to symbolic algebra (taught in high school)
Doing the Right Thing?

• Considerable time and effort are expanded on teaching the model method in the primary years
• Is it worthwhile?
 • Yes
 • The model method help children acquire formal algebra
 • No
 • Children are taught to do the same thing twice
 • Multiple methods confuse children
• Programme evaluation
 • Impracticable
 • Model method has been part of the national curriculum for over ten years

\[
\begin{align*}
3 \text{ units} & \rightarrow 410 + 150 + 130 \\
& = 690 \\
1 \text{ unit} & \rightarrow 760 \div 3 \\
& = 230
\end{align*}
\]
Results

Similarities between the model & symbolic methods
Differences Between Methods

Areas activated by the symbolic method

Lee et al. (2007) Brain Research

Time courses of signal changes in the precuneus Threshold set at p < .001 (uncorrected)

Lee et al. (2010) ZDM
Behavioural Studies
Working Memory and Mathematical Performance

- Central executive measures predicted early mathematical performance
 - Bull, Johnston, and Roy (1999), Bull and Scerif (2001)
- Standardised working memory scores predicted children’s academic standing in mathematics with 83% accuracy
 - Gathercole and Pickering (2000)
Does Working Memory Explain Variance in Algebraic Performance?

Lee, Ng, Ng, & Lim (2004) *Jn Exp Child Psych*

* $p < .05$, ** $p < .01$,

$R^2 = .46$, CFI = .095, SRMR = .07

Participants: 151 10-year-olds
Are Some Aspects of Algebraic Problem Solving More Resource Intensive?

- A cow weighs 150 kg more than a dog
- A goat weighs 130 kg less than the cow
- Altogether the three animals weigh 410 kg
- What is the mass of the cow?

Overall accuracy \(\leftarrow \) WM

- \(R^2 = 0.26 \)

Question Understanding
- Identifying known vs. unknown, working out problem requirement,

- \(R^2 = 0.23 \)

Quantitative Judgment
- Which animal weighs more – the goat or the cow?

- \(R^2 = 0.19 \)

Operator Selection
- Associating quantitative relationship with appropriate arithmetic operation

Computation
- A cow weighs 150 kg more than a dog
- A goat weighs 130 kg less than the cow
- Altogether the three animals weigh 410 kg
- What is the mass of the cow?

Solution Formation
- From pictorial model to solution

- \(R^2 = 0.27 \)

Representation Formation
- From text to pictorial model

- \(R^2 = 0.26 \)

Lee, Ng, & Ng (2009) *Jn Educ Psych*
Is the Relation Causal?

- Dual task experiment
- Evidence of causal link

A Longitudinal Investigation
Research Question

• Are there age related differences in the role of working memory and updating?
 o Unless there are extended periods of revision and consolidation that results in a high level of automaticity, WM and updating resources will be needed for solution
 o From a predictive perspective, two possibilities
 • Math performance is dependent largely on building up domain specific skills and knowledge
 o => WM and updating supports computation of solution, but less so for acquisition
 • Alternatively, additional WM and updating resources may be needed during initial acquisition to support the learning of novel concepts
 o WM reduces in importance as subsequent learning becomes more dependent on prior knowledge
Constructs Tested

Executive functioning

Basic numeracy

Understanding of math patterns

Arithmetic

Algebra

Inhibition, switching

WM & updating

K2

Grade 9

General math achievement
Cross-sequential Design

<table>
<thead>
<tr>
<th>Cohorts</th>
<th>Grades (Age)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K2 (5)</td>
<td>P1 (6)</td>
</tr>
<tr>
<td>P2 (7)</td>
<td>P3 (8)</td>
</tr>
<tr>
<td>P2 (7)</td>
<td>P3 (8)</td>
</tr>
<tr>
<td>P4 (9)</td>
<td>P5 (10)</td>
</tr>
<tr>
<td>P4 (9)</td>
<td>P5 (10)</td>
</tr>
<tr>
<td>P6 (11)</td>
<td>S1 (12)</td>
</tr>
<tr>
<td>P6 (11)</td>
<td>S1 (12)</td>
</tr>
<tr>
<td>S2 (13)</td>
<td>S3 (14)</td>
</tr>
</tbody>
</table>

~ 673 children, over 4 cohorts; 81 school at Wave 4
Instruments

- **Executive functioning**
 - Inhibitory efficiency
 - Flanker
 - Simon
 - Antisaccade Mickey
 - Switching efficiency
 - Switch conditions from Flanker and Simon
 - Picture–symbol
 - Updating capacity
 - Running Span
 - Mr. X
 - Listening Recall

- **Standardised mathematical tasks**
 - Wechsler Individual Achievement Test
 - Number Operations
 - Mathematical Reasoning

- **Curricular based mathematical tasks**
 - Number patterns
 - Function machines
 - Functions
 - Arithmetic and algebraic word problems
Working Memory/
Updating Tasks
Complex Span Tasks

- **Mr. X (AMWA)**
 - Are the two figures holding their balls with the same hand? Remember where the figure with the blue hat holds the ball.

- **Listening Span (AMWA)**
 - Listen to each statement. At the end of each statement, tell me whether it is true or false. When I have finished reading all x statement(s), please tell me the last word in each statement.
 - Bananas live in water (T/F)
 - Flowers smell nice (T/F)
Which were the last two animals that you saw?

Animal Updating
- Children were shown an unknown number of animals one at a time. They were then asked to remember the last 2, 3, or 4 animals.
Math Tasks
<table>
<thead>
<tr>
<th>Grade level</th>
<th>Sample items from the WIAT – Numerical Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten to Primary 1</td>
<td>1 2 3 _ 5 6 7 8 9</td>
</tr>
<tr>
<td>Lower Primary (P1 to P3)</td>
<td>4 + 5 = ___ 150 - 25 4 X 3 = ___</td>
</tr>
<tr>
<td>Upper Primary (P4 to P6)</td>
<td>7)861 .4 + .6 = ___ 1/3 - 1/4 = ___</td>
</tr>
<tr>
<td>Secondary (S1 and above)</td>
<td>10^2 = ___ -14 + (-16) = ___ 2x - 15 = 3 - x x = ___</td>
</tr>
</tbody>
</table>
Number Patterns

Q7
9 10 11 _____ 13

7. 324 675, 344 675, 364 675, _____, 404 675

20 | a, 2(a + d), 3a + 4d, 2(2a + 3d), _____, _____, _____

Ng (2010)
Algebra Word Problems

Edwin spent $\frac{3}{4}$ of his money on books. He spent 48 on books. How much money had he at first?

In 4 years’ time, Mr Wong will be 3 times as old as his son. 4 years ago he was 5 times as old as his son. How old is Mr Wong now?
Findings: Cross-sectional
WM & General
Math Achievement

Correlation ratios

Grades

WMU
Mr. X
Animal Updating
Listening Recall

Numerical Operations
WM, Relational Skills, & Algebra

Correlation ratios

Grades

4 5 6 7 8 9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Findings: Predictive
WM & General Math Achievement

- Crosslagged relations between WM-updating and WIAT remained the same across grades.
- Autoregressive relation between each year’s math performance is lower between Grade 1 and kindergarten.
 - The predictive power of WM-updating is relatively larger in the earlier grades.

Lee & Bull (2015) under review
WM, Relational Skills, & Algebra

Autoregressive-crosslagged model
Estimated parameters = 251,
\[X^2 (1324) = 1828.632, \ p < .001 \]
RMSEA = .049
CFI = .931
SRMR = .120
WM & General Math Achievement

• From a task performance perspective
 • WM-updating relatively more important in the first years of formal schooling

• From an acquisition perspective
 • Actual predictive power of WM-updating remained the same across grades
 • Relative predictive power of WM and updating capacity varies across grades
The role of WM/U seems to differ across the cross-sectional and predictive analyses:

- Cross-sectional
 - WM needed for the execution of both patterns and algebra questions
- Predictive
 - No impact on learning of algebra with the exception of Grade 8 and 9
 - Negative relation for Grade 8
 - Positive relation for Grade 9

Working interpretation

- Children taught to solve very similar algebraic questions in more junior grades using arithmetic unwinding methods.
- More able children are particularly well practiced and successful with the arithmetic methods:
 - They may have difficulty letting go of a successful strategy and adjust to symbolic algebra.
 - There was a general decrease in performance accuracy at this grade, from .48 at Grade 7 to .40.
 - Ability to switch and inhibit correlated weakly to moderately with both algebra and relational performances.
- With more experience, these children again surge ahead in S3.
Future Directions

• Findings regarding the role of WM & updating at Grades 8 and 9 are intriguing
 o Need to examine how children with different WM capacity solve algebra questions as they transit from an arithmetic to a symbolic approach to algebra

• The role of inhibitory abilities is intriguing
 o Conceptually important, but difficult to demonstrate empirically
 • Measurement issues?